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Abstract
In this paper, we first prove the Grammian determinant solution to the discrete
KP (dKP) equation by the algebraic identity of pfaffian instead of Laplace
expansion for determinants. Then we present the Gram-type pfaffian solution
to the pfaffianized dKP system. As an example, the N-soliton solution for the
system is obtained.

PACS number: 02.30.Ik

1. Introduction

In the early 1990s, a procedure for generalizing equations from the KP hierarchy was developed
to produce coupled systems of equations which is now called pfaffianization [1, 2]. These
pfaffianized equations appear as coupled systems of the original equations and have soliton
solutions expressed by pfaffians. Such a procedure has been successfully applied to the
Davey–Stewartson equations [3], the self-dual Yang–Mills equation [4] and the dKP equation
[5], etc.

In the studies of KP hierarchy, the Wronskian determinant solutions first appeared in [6–9]
and later the Grammian determinant solutions for the KP equation were investigated in [2, 10].
In [1], the Gram-type pfaffian solutions for the coupled KP equation were also considered.
Following the KP equation and the coupled KP equation, in [11], we have obtained the
Grammian determinant solutions and the Gram-type pfaffian solutions to three pfaffianized
systems derived from the two-dimensional Toda equation, the semi-discrete Toda equation
and the differential-difference KP equation successfully.

As for a fully discrete equation, the Grammian determinant solution to the dKP equation
has been studied in [12]. Therefore we can consider the discrete Gram-type pfaffian solution
for the pfaffianized dKP equation in the same way.

The paper is organized as follows. In section 2, we give another proof of the Grammian
determinant solution to the dKP equation by the algebraic identity of a pfaffian. In section 3,
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we present the Gram-type pfaffian solution to the pfaffianized dKP system. Section 4 is a
conclusion.

2. Elementary properties of a pfaffian

For the mathematics of pfaffians, the readers may refer to some textbooks [13]. In this section,
we summarize some properties of pfaffians playing important roles in the solition theory. In
the following, we write the (i, j) element of a pfaffian simply as (i, j).

Pfaffians are antisymmetric functions with respect to characters,

(i, j) = −(j, i), for any i and j.

A pfaffian of degree 2n is inductively defined by the following expansion rule:

(1, 2, . . . , 2n) =
2n∑

j=2

(−1)j (1, j)(2, 3, . . . , ĵ , . . . , 2n),

where ĵ denotes the missing of the letter j . For example, if n = 2, we have

(1, 2, 3, 4) = (1, 2)(3, 4) − (1, 3)(2, 4) + (1, 4)(2, 3).

From the definition of a pfaffian, we can see that pfaffians are closely related to
determinants. A determinant of degree n

B = det|bj,k|1�j,k�n

can be expressed by means of a pfaffian of degree 2n as

det|bj,k|1�j,k�n = (1, 2, . . . , n, n∗, . . . , 2∗, 1∗),

whose entries (j, k), (j ∗, k∗) and (j, k∗) are defined by

(j, k) = 0, (j ∗, k∗) = 0, (j, k∗) = bj,k.

The most important property of a pfaffian is given in the following golden theorem for
the expansion of a pfaffian.

Theorem. If an identity on pfaffians holds, the equation which is obtained by appending
(1, 2, . . . , 2n) homogenously to all pfaffians in the identity also holds.

Example. We have

(a1, a2, a3, a4) = (a1, a2)(a3, a4) − (a1, a3)(a2, a4) + (a1, a4)(a2, a3).

Applying the above theorem, we have

pf(a1, a2, a3, a4, 1, 2, . . . , 2n) pf(1, 2, . . . , 2n)

= pf(a1, a2, 1, 2, . . . , 2n) pf(a3, a4, 1, 2, . . . , 2n)

− pf(a1, a3, 1, 2, . . . , 2n) pf(a2, a4, 1, 2, . . . , 2n)

+ pf(a1, a4, 1, 2, . . . , 2n) pf(a2, a3, 1, 2, . . . , 2n). (1)

As a special case, we get the Jacobi identity for the determinant

(a1, b1, a2, b2, 1, . . . , n, n∗, . . . , 1∗)(1, . . . , n, n∗, . . . , 1∗)
= (a1, b1, 1, . . . , n, n∗, . . . , 1∗)(a2, b2, 1, . . . , n, n∗, . . . , 1∗)

+ (a1, b2, 1, . . . , n, n∗, . . . , 1∗)(b1, a2, 1, . . . , n, n∗, . . . , 1∗), (2)
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where

(a1, a2) = (b1, b2) = 0, (ai, j) = 0, (bi, j
∗) = 0, (i, j) = (i∗, j ∗) = 0.

3. Discrete grammian determinant solution to the dKP equation

The discrete KP equation in bilinear form is

a1(a2 − a3)τ (k1 + a1, k2, k3)τ (k1, k2 + a2, k3 + a3)

+ a2(a3 − a1)τ (k1, k2 + a2, k3)τ (k1 + a1, k2, k3 + a3)

+ a3(a1 − a2)τ (k1, k2, k3 + a3)τ (k1 + a1, k2 + a2, k3) = 0. (3)

In [12], the discrete Gram-type determinant solution was presented and has been proved by
the Laplace expansion for determinants. In this section, we will prove the solution by the
Jacobi identity.

The discrete Gram-type determinant solution for the discrete KP equation is

τ(k1, k2, k3) = det(mij (k1, k2, k3))1�i,j�N, (4)

where the matrix element mij is an arbitrary function of k1, k2, k3 satisfying

�+kν
mij (k1, k2, k3) = φi(kν + aν; 0)φ̄j (0), ν = 1, 2, 3. (5)

In the above, φi and φ̄i are arbitrary functions of k1, k2, k3 and s, satisfying the dispersion
relations

�−kν
φi(k1, k2, k3; s) = φi(k1, k2, k3; s + 1), (6)

�+kν
φ̄i(k1, k2, k3; s) = φ̄i(k1, k2, k3; s + 1), (7)

where �−kν
and �+kν

are the backward and forward difference operators which are defined by

�−kν
F (kν) = F(kν) − F(kν − aν)

aν

, (8)

�+kν
F (kν) = F(kν + aν) − F(kν)

aν

. (9)

Hereafter, the unshifted independent variables are omitted and only the shifted variables are
denoted. In [12], the N-soliton solution for equation (3) was also presented.

As we know, any determinant can be expressed by a pfaffian. Thus we have

τ = (1, . . . , N,N∗, . . . , 1∗), (i, j) = (i∗, j ∗) = 0, (10)

�+kν
(i, j ∗) = (i, j ∗)kν+aν

− (i, j ∗)
aν

= φi(kν + aν; 0)φ̄j (0), (11)

where φi and φ̄i satisfy the dispersion relations (equations (6) and (7)). In order to prove that
τ satisfies equation (3), let us introduce pfaffians defined by

(d∗
ν , i) = −φi(kν + aν; 0), (d̄n, j

∗) = −φ̄j (n), (d̄n, d
∗
ν ) = (−1)n

1

an+1
ν

, (12)

(d̄m, d̄n) = (d∗
µ, d∗

ν ) = 0, (d̄n, j) = 0, (d∗
ν , j ∗) = 0. (13)
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Denoting τ = (1, . . . , N,N∗, . . . , 1∗) = (·), by employing the above pfaffians and
equations (6) and (7), we have

1

aν

τ (kν + aν) = (d̄0, d
∗
ν , ·), (14)

aν − aµ

(aνaµ)2
τ(kν + aν, kµ + aµ) = (d̄1, d̄0, d

∗
µ, d∗

ν , ·), ν, µ = 1, 2, 3, ν < µ. (15)

Substituting equations (14) and (15) into equation (3) leads to the following identity:

(d̄0, d
∗
1 , ·)(d̄1, d̄0, d

∗
3 , d∗

2 , ·)− (d̄0, d
∗
2 , ·)(d̄1, d̄0, d

∗
3 , d∗

1 , ·) + (d̄0, d
∗
3 , ·)(d̄1, d̄0, d

∗
2 , d∗

1 , ·)= 0.

(16)

In fact, according to the pfaffian identity, the left-hand side of equation (16) is equal to
(d̄0, d̄1, d̄0, d

∗
3 , d∗

2 , d∗
1 , . . .)(· · ·) which is obviously 0.

4. Gram-type pfaffian solution to the coupled dKP equation

The idea of the pfaffianization is just removing the condition of the specialization (i, j) =
(i∗, j ∗) = 0 in equation (10) and considering the generic form of pfaffian elements. Then
we can get the pfaffianized bilinear equations which are satisfied by those pfaffians. In [5], a
pfaffianized dKP system is obtained:

a1(a2 − a3)τ (k1 + a1, k2, k3)τ (k1, k2 + a2, k3 + a3)

+ a2(a3 − a1)τ (k1, k2 + a2, k3)τ (k1 + a1, k2, k3 + a3)

+ a3(a1 − a2)τ (k1, k2, k3 + a3)τ (k1 + a1, k2 + a2, k3)

= a1a2a3(a1 − a2)(a2 − a3)(a3 − a1)σ (k1 + a1, k2 + a2, k3 + a3)σ̄ (k1, k2, k3),

(17)

a2a3(a2 − a3)τ (k1 + a1, k2, k3)σ (k1, k2 + a2, k3 + a3)

+ a1a3(a3 − a1)τ (k1, k2 + a2, k3)σ (k1 + a1, k2, k3 + a3)

+ a1a2(a1 − a2)τ (k1, k2, k3 + a3)σ (k1 + a1, k2 + a2, k3)

+ (a1 − a2)(a2 − a3)(a3 − a1)σ (k1 + a1, k2 + a2, k3 + a3)τ (k1, k2, k3) = 0,

(18)

a2a3(a2 − a3)σ̄ (k1 + a1, k2, k3)τ (k1, k2 + a2, k3 + a3)

+ a1a3(a3 − a1)σ̄ (k1, k2 + a2, k3)τ (k1 + a1, k2, k3 + a3)

+ a1a2(a1 − a2)σ̄ (k1, k2, k3 + a3)τ (k1 + a1, k2 + a2, k3)

+ (a1 − a2)(a2 − a3)(a3 − a1)τ (k1 + a1, k2 + a2, k3 + a3)σ̄ (k1, k2, k3) = 0.

(19)

Following the coupled KP equation, we can get the following Gram-type pfaffian solution
for the above pfaffianized system:

τ = (1, . . . , 2N), σ = (d0, d1, 1, . . . , 2N), σ̄ = (d̄0, d̄1, 1, . . . , 2N), (20)

where the (i, j) element is an arbitrary function of k1, k2, k3 satisfying

�+kν
(i, j) = (i, j)kν+aν

− (i, j)

aν

= φi(kν + aν; 0)φ̄j (0) − φj (kν + aν; 0)φ̄i(0), (21)
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where φi and φ̄i are arbitrary functions of k1, k2, k3 and s, satisfying the dispersion relations
equations (6) and (7), and other pfaffian elements are given by

(dn, i) = −φi(n), (d0, d1) = 0, (d0, cν) = 0, (d̄n, i) = −φ̄i(n), (22)

(d̄n, d̄m) = (cν, cµ) = 0, (cν, i) = −φi(kν + aν; 0), (d̄n, cν) = (−1)n
1

an+1
ν

. (23)

By employing the above pfaffians and the dispersion relations (21), denoting (1, 2, . . . , 2N) =
(·), we have

1

aν

τ (kν + aν) = (d̄0, cν, ·), ν = 1, 2, 3, (24)

aν − aµ

(aνaµ)2
τ(kν + aν, kµ + aµ) = (d̄1, d̄0, cµ, cν, ·), ν, µ = 1, 2, 3, ν < µ, (25)

(a1 − a2)(a1 − a3)(a2 − a3)

(a1a2a3)3
τ(k1 + a1, k2 + a2, k3 + a3) = (d̄2, d̄1, d̄0, c3, c2, c1, ·), (26)

aνσ (kν + aν) = (d0, cν, ·), ν = 1, 2, 3, (27)

(aν − aµ)σ (kν + aν, kµ + aµ) = (cµ, cν, ·), ν, µ = 1, 2, 3, ν < µ, (28)

(a1 − a2)(a1 − a3)(a2 − a3)

a1a2a3
σ(k1 + a1, k2 + a2, k3 + a3) = (d̄0, c3, c2, c1, ·), (29)

1

a3
ν

σ̄ (kν + aν) = (d̄0, d̄1, d̄2, cν, ·), ν = 1, 2, 3. (30)

Hereafter, we denote τ = (1, . . . , 2N) = (·). Substituting the above pfaffians into
equations (17)–(19), we get the following pfaffian identities:

0 = (d̄0, d̄1, d̄0, c3, c2, c1, ·)(·)
= (d̄0, d̄1, ·)(d̄0, c3, c2, c1, ·) + (d̄0, c3, ·)(d̄1, d̄0, c2, c1, ·)

− (d̄0, c2, ·)(d̄1, d̄0, c3, c1, ·) + (d̄0, c1, ·)(d̄1, d̄0, c3, c2, ·), (31)

0 = (d̄0, c3, c2, c1, ·)(·) − (d̄0, c3, ·)(c2, c1, ·) + (d̄0, c2, ·)(c3, c1, ·) − (d̄0, c1, ·)(c3, c2, ·),
(32)

0 = (d̄2, c3, c2, c1, d̄0, d̄1, ·)(d̄0, d̄1, ·) − (d̄2, c3, d̄0, d̄1, ·)(c2, c1, d̄0, d̄1, ·)
+ (d̄2, c2, d̄0, d̄1, ·)(c3, c1, d̄0, d̄1, ·) − (d̄2, c1, d̄0, d̄1, ·)(c3, c2, d̄0, d̄1, ·).

(33)

Thus, we have finished the proof.
As an example of pfaffian element (i, j), we can take

(i, j) = cij +
∞∑

s=0

(−1)sφi(s)φ̄j (−s − 1) −
∞∑

s=0

(−1)sφj (s)φ̄i(−s − 1). (34)
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The N-soliton solution for equations (17)–(19) is given by τ , σ and σ̄ in equation (20)
with

(i, j) = cij +
1

pi + p̄j

αi

∏

ν

(1 − piaν)
−kν/aν ᾱj

∏

µ

(1 + p̄j aµ)kµ/aµ

− 1

pj + p̄i

αj

∏

ν

(1 − pjaν)
−kν/aν ᾱi

∏

µ

(1 + p̄iaµ)kµ/aµ, (35)

φi(k1, k2, k3; s) = ps
i αi

∏

ν

(1 − piaν)
−kν/aν , (36)

φ̄i(k1, k2, k3; s) = p̄s
i ᾱi

∏

ν

(1 + p̄iaν)
kν/aν . (37)

5. Conclusion

From [1, 2, 10], we know that the KP equation has solutions expressed in a Grammian
form and accordingly the coupled KP equation possesses the solution expressed in the
Gram-type pfaffian. Following the KP equation and the coupled KP equation, we have
obtained the Grammian determinant solutions and the Gram-type pfaffian solutions for
three pfaffianized differential-difference systems in [11]. As for the fully discrete case,
the Grammian determinant solution has been proposed in [12].

In this paper, we first proved the determinant solution to the dKP equation by the algebraic
identity of a pfaffian instead of Laplace expansion for determinants. Once we get the pfaffian
expression of the solution and the proof of using the pfaffian identities, we can generalize the
dKP equation to the coupled dKP by applying the pfaffianization, that is, replacing the pfaffian
element for the solution of dKP by the generic one. Then we naturally get the Gram-type
pfaffian solution to the pfaffianized dKP system referring to the continuous cases and the
semi-discrete ones. It is obvious that the dKP equation and its solution is a special case of the
coupled dKP and its pfaffian solution. By taking

φi = φ̄2N+1−i = 0, i = N + 1, . . . , 2N, (38)

(i, j) = 0, 1 < i < j < N or N + 1 < i < j < 2N, (39)

the pfaffian τ in equation (20) reduces to the pfaffian τ in equation (10) and the coupled dKP
equation (17) goes down to the dKP equation (3). All equations in section 2 can be derived
from the corresponding ones in section 3 just by re-numbering φ̄2N+1−i → φ̄i for 1 < i < N

and rewriting cν → d∗
ν .
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